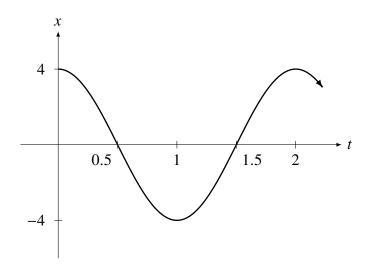


James Ruse Agricultural High School

2022 Year 12 Trial HSC Examination

Mathematics Extension 2

General Instructions	 Reading time – 10 minutes Working time – 3 hours Write using black pen Calculators approved by NESA may be used A reference sheet is provided at the back of this paper For questions in Section II, show relevant mathematical reasoning and/ or calculations
Total marks: 100	 Section I – 10 marks (pages 2–4) Attempt Questions 1–10 Allow about 15 minutes for this section
	 Section II – 90 marks (pages 6–15) Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section


Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

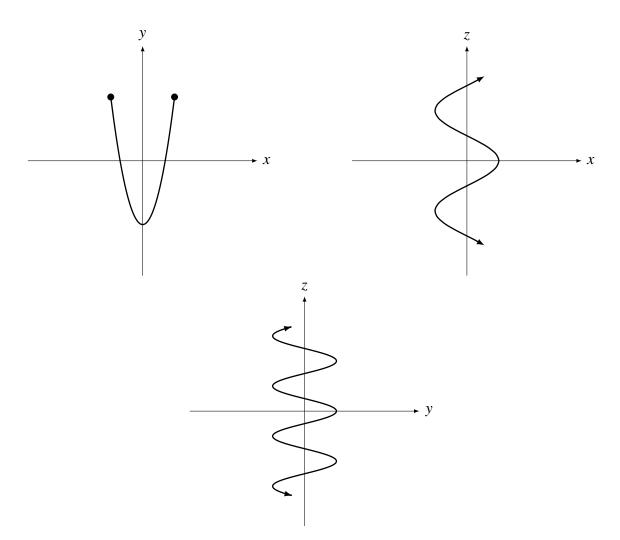
- 1 Which expression is equal to $\int x^2 \sin x \, dx$?
 - A. $-x^2 \cos x \int 2x \cos x \, dx$ B. $-2x \cos x + \int x^2 \cos x \, dx$ C. $-x^2 \cos x + \int 2x \cos x \, dx$ D. $-2x \cos x - \int x^2 \cos x \, dx$
- 2 Given that $(1+i)^n = ai$, where *a* is a non-zero real constant, then $(1+i)^{2n+2}$ simplifies to A. a^4
 - B. $2a^2i$
 - C. $1 + a^2 i$
 - D. $-2a^2i$
- 3 A line in 3D space has equation given by $\underline{r} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$, where λ is a real constant. Which of the following statements is true?
 - A. The line passes through the origin.
 - B. The point (-2, 5, 1) lies on the line.
 - C. The point (2, 2, 2) lies on the line.
 - D. The vector $4\underline{i} 3j + \underline{k}$ points in the direction of the line.

4 A particle moves in simple harmonic motion represented by the displacement-time graph below.

Which of the following represents the velocity of the particle as a function of time?

- A. $v(t) = 4\cos \pi t$
- B. $v(t) = \pi \cos \pi t$
- C. $v(t) = -4\pi \sin \pi t$
- D. $v(t) = -4\sin \pi t$
- 5 Which of the following options is the contrapositive of the statement:

"You win the game if you know the rules but are not overconfident."


- A. If you lose the game, then you don't know the rules or you are overconfident.
- B. If you don't know the rules or are overconfident, you lose the game.
- C. If you know the rules of are overconfident, then you win the game.
- D. A necessary condition that you know the rules or you are not overconfident is that you win the game.
- 6 If 1 + ki a root of the quadratic $z^2 + kz + 5$, where k is a real number, what is the value of k?
 - A. k = 2 only
 - B. k = -2 only
 - C. k = 2 and k = -2
 - D. No real value of k exists.

- 7 Let $z = \sqrt{3} + i$. If $z^n + (\overline{z})^n$ is rational, which of the following is NOT a possible value of *n*?
 - A. 2 B. 3
 - C. 5 D. 6
- 8 Consider the statements below.
 - I. $f(x) \le g(x) \iff f'(x) \le g'(x)$ II. $f(x) \le g(x)$ for all $x \in [a, b] \iff \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$.

Which of the following options are true?

- A. I and II are both false.
- B. I is false but II is true.
- C. I is true but II is false.
- D. I and II are both true.
- 9 A particle is moving along a straight line so that initially its displacement is x = 1, its velocity is v = 2, and its acceleration is a = 4. Which is a possible equation describing the motion of the particle?
 - A. $v = 2\sin(x 1) + 2$
 - B. $v = 2 + 4 \ln x$
 - C. $v^2 = 4(x^2 2)$
 - D. $v = x^2 + 2x + 4$

10 Let $\underline{r}(t)$ be a curve in 3D space. The following diagrams show projections of $\underline{r}(t)$ onto the xy, xz and yz planes. The diagrams are NOT to scale.

Which of the following is the correct vector representation of $\underline{r}(t)$?

- A. $\underline{r}(t) = (2\sin t)\underline{i} + (4\cos 2t)\underline{j} + (t)\underline{k}$
- B. $\underline{r}(t) = (2\sin t)\underline{i} + (4\sin 2t)\underline{j} + (t)\underline{k}$
- C. $\underline{r}(t) = (2\cos t)\underline{i} + (4\cos 2t)\underline{j} + (t)\underline{k}$
- D. $\underline{r}(t) = (2\cos t)\underline{i} + (4\sin 2t)\underline{j} + (\sqrt{t})\underline{k}$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (16 marks) Use the Question 11 Writing Booklet

(a)	(i) Write the negation of the statement P below using logic symbols.	1

$$P: \quad \forall x \in \mathbb{Z}^+, \exists y \in \mathbb{Z}^+, y = x - 1.$$

(ii) Prove that the original statement *P* is false by providing a counterexample. 1

(b) (i) Prove that $x + y \ge 2\sqrt{xy}$ for positive real numbers x and y. 1

(ii) Hence, or otherwise, find the minimum value of the function 2

$$f(x) = \frac{9x^2 \sin^2 x + 4}{x \sin x}$$

in the domain $0 < x < \pi$.

Question 11 continues on page 7

Question 11 (continued)

(c) Compute the following integrals.

(i)
$$\int \frac{1}{\sqrt{3+2x-x^2}} dx$$
 2
$$\int \frac{x+7}{x+7} dx$$

(ii)
$$\int \frac{x+7}{1-x^2} dx$$
 3

- (d) Determine whether the line through the points (2, 0, 9) and (-4, 1, 5) and the line **2** given by $\underline{r} = \begin{bmatrix} 5\\2\\-8 \end{bmatrix} + \lambda \begin{bmatrix} 0\\-9\\-3 \end{bmatrix}$ are parallel, perpendicular or neither. You must show all your working.
- (e) Let \underline{a} and \underline{b} be non-zero vectors and $\underline{F}(t) = e^{2t}\underline{a} + e^{-2t}\underline{b}$. Prove that $\underline{F}''(t)$ has the **2** same direction as $\underline{F}(t)$.
- (f) Show that a particle which moves according to the equation $v^2 = 36 6x 2x^2$ is undergoing simple harmonic motion, where v is the velocity of the particle and x is the displacement of the particle.

Question 12 (14 marks) Use the Question 12 Writing Booklet

- (a) Find the cartesian equation of the vector function $\underline{r}(t) = \begin{bmatrix} \frac{1}{2} (\cos t \sin t) \\ \cos^3 t \sin^3 t \end{bmatrix}$. 4
- (b) A particle of unit mass is projected vertically upwards from the ground at a speed of $V \text{ ms}^{-1}$. The particle is acted on by both gravity, and air resistance of magnitude $\frac{v^2}{40}$, where *v* is the velocity of the particle measured in ms⁻¹. After *t* seconds, the particle's height from the ground, is *x* metres.
 - (i) Draw a force diagram illustrating all the forces acting on the particle while the particle is moving upwards and derive the equation of motion $\ddot{x} = -\left(g + \frac{v^2}{40}\right)$.
 - (ii) Show that the greatest height the particle reaches is $h = 20 \ln \left(\frac{40g + V^2}{40g} \right)$. 3

3

2

(iii) Find the time taken to reach this greatest height.

Having reached its maximum height, the particle falls back down towards its initial point of projection. Assume that only gravity and air resistance act on the particle.

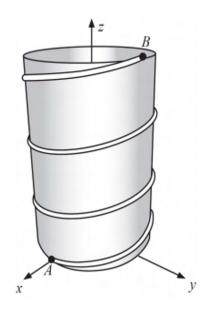
(iv) Find the terminal velocity of the particle on its way down.

Question 13 (15 marks) Use the Question 13 Writing Booklet

- (a) Prove that for all complex numbers $z, e^z \neq 0$.
- (b) Use mathematical induction to prove that the number of diagonals of a convex polygon 3 with *n* vertices is $\frac{1}{2}n(n-3)$ for $n \ge 4$.

3

(c) A function f(x) with domain \mathcal{D} is called *injective* if


$$\forall x_1, x_2 \in \mathcal{D} \qquad x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$$

- (i) Write down an equivalent statement for f(x) to be *injective*. 1
- (ii) Hence, prove that f(x) = 3x + 4 is an *injective* function across its natural domain. 2
- (d) Three points A, B and C have position vectors -2a + 3b + 5c, a + 2b + 3c and 7a c **2** respectively. The point B lies between A and C. Show that \overline{A} , \overline{B} and \overline{C} are collinear.

Question 13 continues on page 10

Question 13 (continued)

(e) The stairs of a cylindrical shaped tower spiral upwards from the ground to an observation deck at point *B*, as shown below.

The path begins at point A on the ground along the x-axis and finishes at B. The time taken in seconds for Hannah to walk along the spiral path starting at A is presented by t. It takes Hannah 70π seconds to reach point B. Her position on this path can be represented by

$$\underline{r}(t) = \begin{bmatrix} 15\cos(0.5t) \\ 15\sin(0.5t) \\ 0.3t \end{bmatrix} \text{ metres.}$$

(i) Determine the height of the observation deck above the ground correct to 2 1 decimal places.

Hannah walks one loop around the tower and ends up directly above point A.

(ii) At wh	hat time and height does this occur?	1
(iii) Find F	Hannah's speed at this point.	2

(iii) Find Hannah's speed at this point.

Question 14 (15 marks) Use the Question 14 Writing Booklet

- (a) Let P be the point which represents the complex number z = x + iy in the complex plane.
 - (i) Sketch the curve traced out by *P* in the complex plane if |z-1-i| = Im(z+1+i). **3** You MUST draw the curve on the axes provided for you on the back of the Multiple Choice sheet.
 - (ii) Show that $-(\overline{iz}) = y + ix$.

1

3

3

Suppose now that the point Q represents the complex number $-(\overline{iz})$.

- (iii) Sketch the curve traced out by Q on the same diagram as part (i). Show all **2** necessary features.
- (b) For n = 0, 1, 2, ... define $I_n = \int_0^{\pi/4} \tan^n \theta \ d\theta.$

(i) Show that
$$I_1 = \frac{1}{2} \ln 2$$
. **1**

- (ii) Show that for $n \ge 2$, $I_n + I_{n-2} = \frac{1}{n-1}.$
- (iii) For $n \ge 2$, explain why $I_n < I_{n-2}$, and deduce that

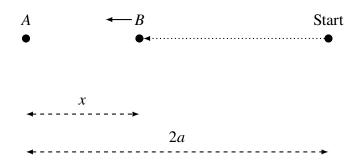
$$\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}.$$

- (iv) By using the recurrence relation in part (ii), find I_5 and deduce that 2
 - $\frac{2}{3} < \ln 2 < \frac{3}{4}.$

Question 15 (14 marks) Use the Question 15 Writing Booklet

(a) Let
$$S_1$$
 be a sphere with equation $\left| \underbrace{r}_{c} - \begin{bmatrix} 0 \\ -1 \\ 6 \end{bmatrix} \right| = 15.$

- (i) Show that the point P(4.2, -1, 0.4) lies inside the sphere S_1 . 1
- (ii) Find the equation of the line ℓ passing through the centre of the sphere S_1 and 2 the point *P*. Express the direction vector of your line as a unit vector.


Another sphere S_2 has radius 10 and centre at the point *P*. The intersection between S_1 and S_2 is a circle *C*. You are given that the line ℓ is perpendicular to the plane which the circle *C* lies in.

(iii) The radius of sphere S_2 remains fixed at 10 but its centre is now free to move **3** along the line ℓ . Find all possible vector equations of sphere S_2 such that it is internally tangent to S_1 .

Question 15 continues on page 13

(b) Two particles with opposite charges are attracted to each other with a force numerically equal to $\frac{k^2}{x^2}$, where x is their distance apart in metres.

Particle A is fixed and particle B, of mass m kg, is released at a distance 2a metres from A, as shown in the diagram below.

(i) Show that the speed v of particle B can be given by $v^2 = \frac{2k^2}{m} \left(\frac{1}{x} - \frac{1}{2a}\right)$. 3

5

(ii) Find the time taken for particle *B* to reach halfway to *A* from the start.

Question 16 (16 marks) Use the Question 16 Writing Booklet

- (a) Let *w* be the fifth root of unity with smallest positive argument.
 - (i) Show that $1 + w + w^2 + w^3 + w^4 = 0.$ 1
 - (ii) Hence, or otherwise, show that

$$1 + 2w + 3w^2 + 4w^3 + 5w^4 = \frac{5}{w - 1}.$$

(iii) By expressing $z^5 - 1$ as a product of its factors, deduce that

$$(1-w)(1-w^2)(1-w^3)(1-w^4) = 5.$$

(iv) If k is a positive integer, show that

$$1 + w^{k} + w^{2k} + w^{3k} + w^{4k} = \begin{cases} 5, & \text{if } k \text{ is divisible by } 5\\ 0, & \text{otherwise.} \end{cases}$$

(v) Let ℓ be the largest integer such that $5\ell \le n$. Use the binomial theorem to show 3 that for $n \in \mathbb{Z}^+$

$$\frac{1}{5} \Big[2^n + (1+w)^n + (1+w^2)^n + (1+w^3)^n + (1+w^4)^n \Big] \\ = \binom{n}{0} + \binom{n}{5} + \binom{n}{10} + \dots + \binom{n}{5\ell}.$$

Question 16 continues on page 15

3

2

2

(b) (i) Show that, for non-zero vectors **u** and **v**, and real scalars α and β ,

$$\operatorname{proj}_{\beta \mathbf{v}}\left(\alpha \mathbf{u}\right) = \alpha \operatorname{proj}_{\mathbf{v}}\left(\mathbf{u}\right).$$

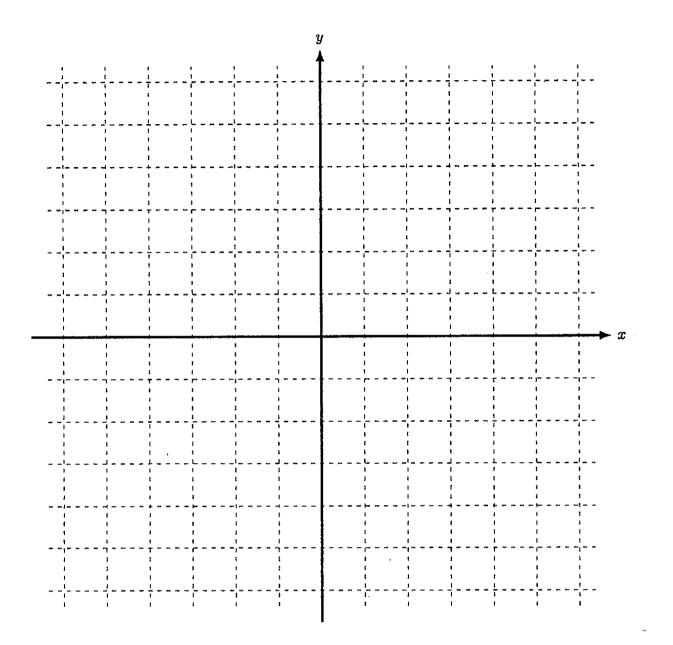
1

4

(ii) Consider the sequences of vectors $\{a_n\}$ and $\{b_n\}$ defined by

$$\mathbf{a_n} = \frac{1}{5^n} \begin{bmatrix} (-1)^{n+1} \times 2\\ 3\\ (-1)^n \end{bmatrix} \quad \text{and} \quad \mathbf{b_n} = \frac{1}{2^n} \begin{bmatrix} 1\\ -8\\ 7 \end{bmatrix}$$

for all integers $n \ge 0$.


A sequence of projection vectors $\{\mathbf{c}_n\}$ is defined by $\mathbf{c}_n = \text{proj}_{\mathbf{a}_n}(\mathbf{b}_n)$ for all integers $n \ge 0$.

Find
$$\sum_{n=0}^{\infty} \mathbf{c_n}$$
.

End of Examination.

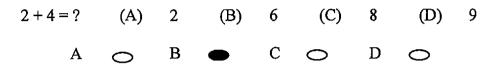
BLANK PAGE

Answer question 14(a)(i) and 14(a)(iii) on the diagram below.

.

Section I

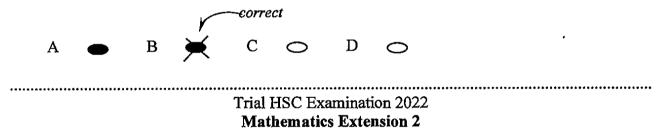
Correct solutions TX+2M(C


10 Marks Attempt Question 1 – 10. Allow approximately 15 minutes for this section.

Use the multiple choice answer sheet below to record your answers to Question 1 - 10.

Select the alternative: A, B, C or D that best answers the question.

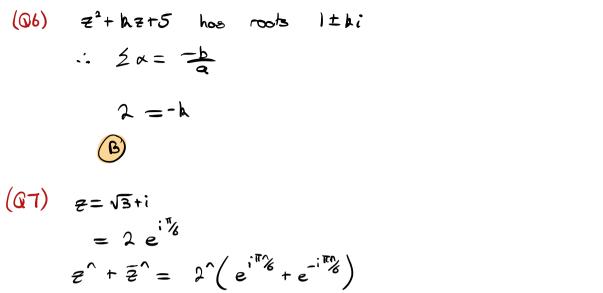
Colour in the response oval completely.


Sample:

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer

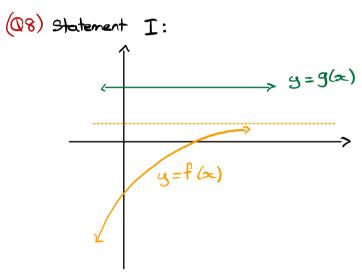
If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "correct" and draw an arrow as follows:

Multiple Choice Answer Sheet


Student ID number:

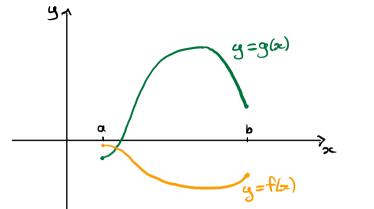
Completely colour in the response oval representing the most correct answer.

1	Α	0	В	0		С	Ð	D	0
2	Α	0	В	0		С	0	D	Ø
3	Α	0	В	0		С	9	D	\circ
4	A	0	В	0		С	Ø	D	0
5	Ā	Ð	В	0		С	Ó	D	0
6	Α	0	В	Ó		С	0	D	0
7	Α	0	В	\circ	•	С	0	D	0
8	Α	P	В	0		_	Ó	D	0
9	Α	ø	В	0		С	Ò	D	0
10	Α	0	в	0		С	Ø	D	0


•

$$\frac{MC \operatorname{Brief} \operatorname{Explanations}:}{(Q1)} \int x^{2} \sin x \, dx \qquad u \equiv x^{2} \qquad v' \equiv \sin x \\ u' \equiv 2x \qquad v \equiv -\cos x \\ = -x^{2} \cos x + \int x \cos x \, dx \\ \textcircled{O} \\ (02) \quad (1+i)^{2n+2} = (1+i)^{2} [(1+i)^{n}]^{2} \\ = 2i \times (\alpha i)^{2} \\ = -2a^{2}i \\ \textcircled{O} \\ (03) \quad \lambda = 1 \Rightarrow f = \binom{2}{2} \\ \xleftarrow{O} \\ (03) \quad \lambda = 1 \Rightarrow f = \binom{2}{2} \\ \xleftarrow{O} \\ (04) \quad x(t) = -4 \cos(\pi t) \\ v(t) = -4 \cos(\pi t) \\ (05) \quad (know \text{ Aules } \land \text{ not overconfident}) \Rightarrow win gome \\ A \qquad \Rightarrow B \\ \text{Lose gome} \qquad \Rightarrow (Don't know \text{ rules } \lor \text{ overconfident}) \\ = 3 \qquad TA \qquad (A)$$

$$= 2^{2} \times 200^{\circ} \left(\frac{\pi}{6}\right) \in \mathbb{Q} \iff \cos\left(\frac{\pi}{6}\right) \in \mathbb{Q}$$



The diagran shows a clear counterexample, since

$$f(z) \leq g(z) \quad bert$$
$$f'(zc) \geq 0 = g(zc)$$

Statement II:

The diagram shows a clear counter example since $\int_{a}^{b} f(\infty) d\infty \leq 0 \leq \int_{a}^{b} g(\alpha) d\alpha$ but

$$f(x) \neq g(x)$$
 for all $x \in [a, b]$.

2. Option A

 \bigcirc

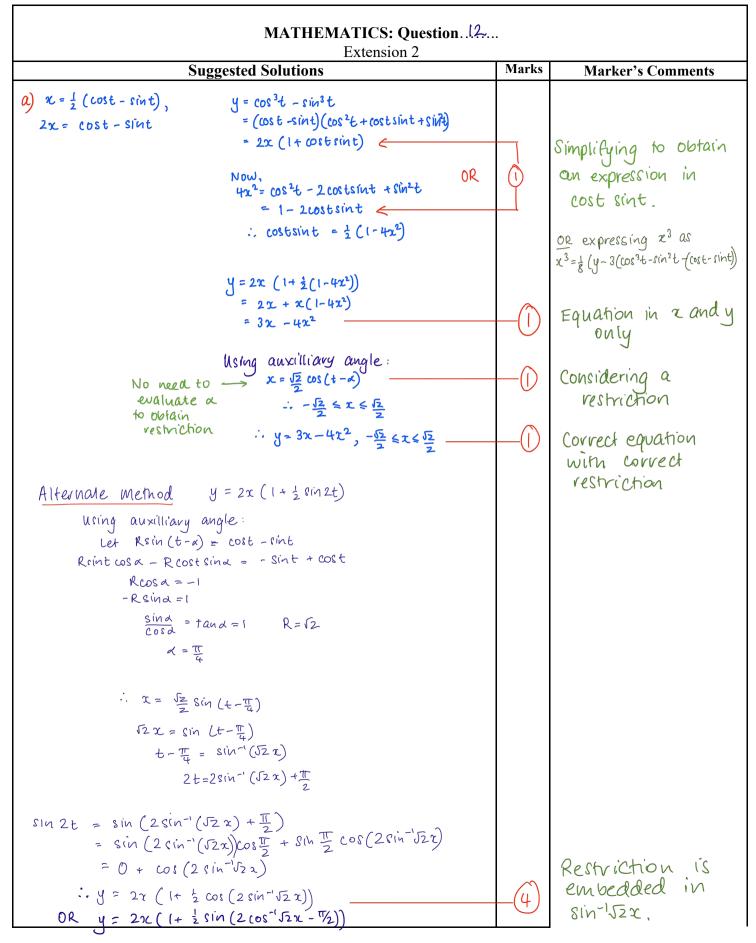
(Q)
$$t=0, x=1, v=2, a=4$$

 $x=1, v=2 \rightarrow \text{eliminates} \quad C \quad S \quad D$
 $a= v \frac{dv}{dx} \qquad a= v \frac{dv}{dx}$
 $= \left[2\sin(x-1)+2\right] 2\cos(x-1) \qquad = (2+4\ln x)\frac{4}{x}$
 $x=1 \rightarrow a= 2x2 \qquad x=1 \rightarrow a= 2x4$

$$x=1 \rightarrow a= 2 \times 2$$

$$= 4$$

$$= 4$$


$$= 8$$
(Q10) Clearly not D since $z=\sqrt{z} \rightarrow 0$ but $z \in \mathbb{R}$.
Clearly not A or B since the $x-z$ plane shows
 $2 \cos(z) = x$, not $2 \sin(z) = x$.

MATHEMATICS EXT2 : Question		
Suggested Solutions	Marks	Marker's Comments
ai, $\exists x \in \mathbb{Z}^+$, $\forall y \in \mathbb{Z}^+$, $y \neq 2^{-1}$.0	
ii, 2=1 is a counterexample since		
$\begin{array}{l} x-l = 1-l \\ = 0 \notin Z^+ \end{array}$		
bi, (52-53) ² 70		
2 - 2,2,4 + y 20		
$x + y > \lambda \sqrt{xy}$	0	· · · · · · · · · · · · · · · · · · ·
ii, $f(x) = \frac{9x^2 \sin^2 x + 4}{x \sin^2 x + 2}$		
$= 9xsinx + \frac{4}{xsin2}$		
7 2 Questine x 4		
(using (i) and noting both terms are positive)		
= 12		
min value of flac) is 12.		
$\frac{c_{i}}{\sqrt{3r^{2}\alpha-x^{2}}} dx$		
$= \int \frac{1}{\sqrt{4-(x-1)^2}} dx$		

MATHEMATICS EXT2: Question || **Suggested Solutions** Marks **Marker's** Comments $\sin^{-1}\left(\frac{2-1}{2}\right)$) + C ·(I) $\frac{x+7}{x-7^2}$ = <u>A</u> + <u>B</u> 1-x 1+x x + 7 = A(1+x) + B(1-z) $x = 1 \rightarrow 8 = A(2)$ (\mathbf{I}) $= -1 \longrightarrow 6 = 2R$ (1)B = $\therefore \int \frac{x+7}{1-x^2} dx = \left[\frac{4}{1-x} + \frac{3}{1+x} \right] dx$ $3 \ln ||+x| - 4 \ln ||-x| + C$ let A=(2,0,9) B=(-4,1,5) $= \begin{pmatrix} -4-2\\ 1-0\\ 5-9 \end{pmatrix}$ (l)_____ let....

MATHEMATICS EXT2: Question			
Suggested Solutions	Marks	Marker's Comments	
Clearly X = 2 AB for 2 eB, so they are not parallel			
So Integ. are rol parallel.			
$\chi \cdot \vec{AB} = -6 \times O + 1 \times -9 + -4 \times -3$			
		•••••	
$\mathbf{C} > 1$		•••••	
= -9+12			
2		•••••	
<u>~ 3</u>		•••••	
/ ^		•••••	
≠Q			
i ant an and in lan			
not perpendicular		•••••	
	··· · ····		
-: lines are neither parallel nor perpendicular	.(!)		
		•••••	
$e_{f} = e^{2t} g_{+} e^{-2t} b_{-}$	•••••	•••••	
$\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} $	•••••	•••••	
$F'(t) = 2e^{2t}g - 2e^{-2t}b$		•••••	
		•••••	
$F''(t) = 4e^{2t}g + 4e^{-2t}b$		•••••	
$\sum_{i=1}^{n} L(i) = \sum_{i=1}^{n} E_{i} = 2 \cdot \overline{T} \cdot \overline{L} \cdot$		•••••	
$= 4(e^{2t}q + e^{-2t}b)$			
= 4 F(t)		•••••	
		•••••	
F(t) has the same direction as F"(t).			

MATHEMATICS EXT2: Question			
Suggested Solutions	Marks	Marker's Comments	
$f_{,} = 36 - 6\alpha - 2\alpha^2$			
$\alpha = \frac{d}{d\alpha} \left(\frac{1}{2} N^2 \right)$			
	•••••	•••••	
4 / 10 2 2	•••••		
$= \frac{d}{dx} \left(\frac{18 - 3x - x^2}{2} \right)$			
$= -3-2\alpha$		•••••	
$= -3 - \lambda x$. (
$\gamma = -\frac{1}{2}$	•••••	•••••	
$\alpha = -2\left(x - \frac{3}{2}\right)$	•••••	•••••	
$\lambda = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	•••••	••••••	
which is of the form $a = -n^2(x - x_0)$	•••••		
		••••••	
Hence, particle moves in StM.	.(1)		
	•••••		
		•••••	
	•••••	•••••	
	•••••		
••••••	•••••	•••••	
	•••••		
		•••••	
		•••••	
••••••	•••••	•••••	
	•••••	•••••	
	•••••	•••••	
	•••••		

J:\Maths\marking templates\Suggested Mk solns template_Ext 2_all Ls.doc

J:\Maths\marking templates\Suggested Mk solns template_Ext 2_all Ls.doc

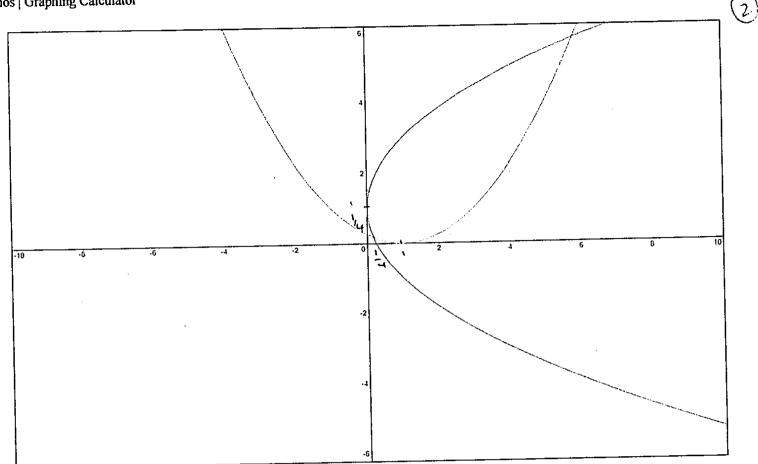
MATHEMATICS Extension 2: Question. 13	8	
Suggested Solutions	Marks	Marker's Comments
a) let $z = x + iy$, $x, y \in \mathbb{R}$ and suppose $e^{z} = 0$ $\therefore e^{x+iy} = 0$		
$e^{x}e^{iy} = 0$ $\therefore e^{x} = 0 \text{ or } e^{iy} = 0$	l	
$e^{x}=0$ as $x \in \mathbb{R}$, $e^{x} \neq 0$	١	
$e^{iy} = 0$ $ e^{iy} = 1$ 0 = 0		
as $ e^{iy} \neq o $ $\therefore e^{iy} \neq 0$	١	
. neither e^{x} or e^{y} can be 0 . by contradiction, $e^{z} \neq 0$ for all complex numbers z .		
Incorrect methods:		
$e^{2} = 0$ lne ² = $ln0$		
Z = INO Z = INO no complex number Z.		max. 1 marle
NOTE: IN O is only undefined for real numbers.		
log(z) = In z + i arg(z) this is not part of our course		

MATHEMATICS Extension 2: Question.	<u>3</u>	
Suggested Solutions	Marks	Marker's Comments
b) base case: n=4		
Any convex quadrilateral will		
have 2 diagonals.		
\forall when $n=4$, ± 1.2 ($u=2$) = 2.12	1	base case
$\frac{1}{2}(4)(4-3) = 2(1)$		
i true for n=4		
Assume true for n=k,		
kap v3 ie. any convex k-sided		
Ver polygon will have		
$\frac{1}{2} k (k-3)$ diagonals.		
Prove true for n=k+1,		
ie. any convex (k+1)-sided polygon will		
have $\frac{1}{2}(k+1)(k-2)$ diagonals.		
War v3 when one more eide		
Veril V2 is added, a new vertex is formed. The (k+1)th		
vertex can form a line with the k other vertices		correct explanation
except for Vk and Vi		most students said that the
as this becomes the sides, ie. R-2 new diagonals,	6	(k+1)th vertex makes diagonals
The side Vie to V. will now become a		will all other vertices except
diagonal as well.		Vie and Vi
: total new diagonals = $k-2+1$ = $k-1$		(. 10+1-2) = $(2-1)$
total diagonals = diagonal in k-sided		this is incorvect
polygon + k-1		

MATHEMATICS Extension 2: Question. 1.3		
Suggested Solutions	Marks	Marker's Comments
$= \frac{1}{2}k(k-3) + k-1 (by assumption)$ $= \frac{1}{2}(k^2 - 3k + 2k - 2)$ $= \frac{1}{2}(k^2 - k - 2)$ $= \frac{1}{2}(k+1)(k-2)$ $\therefore true for n=R+1$ $\therefore the statement is true by the principle of mathematical induction$	١	remaining working out and conclusion
c) i) $\forall x_1, x_2 \in D$ $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$ ii) Suppose $f(x_1) = f(x_2)$ for all	١	one-to-one function was also accepted
$x_1, x_2 \in \mathbb{R}$ $3x_1 + 4 = 3x_2 + 4$	١	
$3x_{1} = 3x_{2}$ $x_{1} = x_{2}$ $\therefore f(x_{1}) = f(x_{2}) \Rightarrow x_{1} = x_{2}$ $\therefore f(x) = 3x + 4 \text{is injective}$ $across R$	ſ	need to show all working and have conclusion
If proving monotonically increasing, need to state $f'(x) > 0$. If drawing a graph, need to show that it is a one-to-one function as it satisfies the horizontal and vertical line test.		

MATHEMATICS Extension 2: Question	S	
Suggested Solutions	Marks	Marker's Comments
d) $\overrightarrow{AB} = 3a - b - 2c$ $\overrightarrow{BC} = 6a - 2b - 4c$ $\overrightarrow{AC} = 9a - 3b - 6c$ $\overrightarrow{BC} = 2\overrightarrow{AB}$ or $\overrightarrow{AC} = 3\overrightarrow{AB}$ \therefore the points are collinear as $\overrightarrow{BC} \overrightarrow{AB}$ and B is a common point	} . }	having any two correct vectors showing one is a scalar multiple of the other and having the correct conclusion - parallel - common point.
e)i) height = $0.3 \times 70\pi$ = 21π = 65.97344 = $65.97m(2dp)$ ii) when t=0, A = $\binom{15}{9}$ for point above A: $15\cos(0.5t) = 15$ $\cos(0.5t) = 1$ $0.5t = 0,2\pi,4\pi,$ $\therefore t = 4\pi$ when t= 4π , height = $0.3 \times 4\pi$ $= 1.2\pi$	1	for time and height
= 3,7699 = 3,77m (2dp)		

MATHEMATICS Extension 2: Question.	<u>3</u> Marks	Marshard, C
Suggested Solutions iii) $r'(t) = \begin{bmatrix} -7.5 \sin(0.5t) \\ 7.5 \cos(0.5t) \\ 0.3 \end{bmatrix}$	Narks	Marker's Comme
at $t = 4\pi$ Speed = $\int (-7.5 \sin((0.5 \times 4\pi))^2 + (7.5 \cos((0.5 \times 4\pi)))^2 + (0.3^2)$		
= 7.505997		
= 7.51 m/s (2dp)	`	


MATHEMATICS Extension	: Question	(\mathbf{I})
Suggested Solutions	Marks Awarded	Marker's Comments
$\begin{aligned} \alpha \ i \end{pmatrix} z - 1 - i &= Im(z + 1 + i) \\ (x - 1) + (y - 1)i &= y + 1 \\ (x - 1)^{2} + (y - 1)^{2} &= (y + 1)^{2} \end{aligned}$	1	well done some students failed to square the (y+1), were
$(2x-1)^{2} + y^{2} - 2y + 1 = y^{2} + 2y + 1$ $y = \frac{1}{4} (x - 1)^{2}$	١	awarded marks If they graphed their answer correctly.
(ii) -(iz) = -(i(x+iy)) $= -(ix-y)$ $= -(-ix-y)$ $= -(+ix)$	ł	most students gameri-this murk
(m) curves are inverse relations. Reflection of Poich other in line y=x	2	Mark If just graphed y=x 2nd mark for correct curve score sturients
		MISI- Represend (jucstic- a-n) only diev 3= X

,

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

:

.

part i) I mark needed to have reprodupoints and underate interception x and y-axis or have graph in correct position. • the use of different realer On each axis districted some graphs • students need to think about the scale they are using. (iii) 2 marks for correct graph • If part i) was incorrect if those graph was a production gained two marks.

 $v = \frac{1}{4}(x-1)^2$

 $\checkmark \quad x = \frac{1}{4} (y-1)^2$

MATHEMATICS Extension 2: Que	stion	
Suggested Solutions	Marks Awarded	Marker's Comments
$iii)T_1 = \int tan x dx$		• some stude t said $\cos(0) = 0$
$= \left[-\ln(\cos x) \right]_{0}^{T_{x}}$		o make sure last line u what you have been asked to prove
$= \ln 1 - \ln \left \frac{1}{\sqrt{2}} \right $ = $\ln \sqrt{2} $ = $\frac{1}{2} \ln 2$	1	well dure well dure on the whole.
(ii) Either $I_n + I_{n-2}$ = $\int_{1}^{T} \tan^n x dx + \int_{1}^{T} \tan^{n-2} x dx$		ust mark was for some manymetric
$= \frac{T}{4} + an^{n-2}x(+an^2x+1)dx$ $= \frac{T}{4} + an^{n-2}x \sec^2 x dx \in \mathbb{C}$	١	2nd nort wes for 1-tegral 3rd mark for a-swer students didn H
$= \left(\frac{fan^{n-1}x}{n-1}\right)^{\frac{1}{2}}$		Med integration Lyports which which the consume
$=$ $\frac{1}{n-1}$	\	C

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

3

MATHEMATICS: Questi		
Suggested Solutions	Marks Awarded	Marker's Comments
$\frac{\partial r}{\partial t_{4}} \int \frac{T}{4} \int \frac{T}{4$	l	
$= \int f + an^{n-2} \chi \left(\sec^2 \chi - 1 \right) d\chi$ $= \int f + an^{n-2} \chi \left(\sec^2 \chi - 1 \right) d\chi$ $= \int f + an^{n-2} \chi \sec^2 \chi d\chi - \int f + an^{n-2} \chi d\chi$ $I_n = \left(\frac{f + an^{n-1} \chi}{n-1} \right)^{T} + \frac{1}{n-2}$		
$I_{n} + I_{n-2} = \frac{1}{n-1}$		
(iii) Since $x \in [0, T]$ then $t = x \times [0, T]$ Then $t = x \times [0, T]$ if $t = 1$ is $t = 1$ o $t = 1$ is $t = 1$ power is smaller than fraction transped to a smaller power $(\frac{1}{2})^3 < \binom{1}{2}$	l for explanation	 Students Failed to include the o for tank graph of y=ten N X and town 2 x meet at 1 whith was ignored by rome students. o students Failed to sive on- explanation

[U]

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

.

MATHEMATICS Extension 1 :	Question	
Suggested Solutions	Marks Awarded	Marker's Comments
(ii) $T_n < T_{n-2}$ $2T_n < T_{n+1} - 2$ $T_n + T_{n-2} = \int_{n-1}^{\infty} partial$ $T_n < \int_{2(n-1)}^{\infty}$ $T_{n+2} < T_n (map n + c_n + 2)$		osone studients didh 14 koncert where to start neuci to conside previous jourt.
$\frac{1}{n+2-1} K 2T_n$ $\frac{1}{2(n+1)} C T_n C \frac{1}{2(n-1)}$	1	 Last statement Should be what You are trying to prove
Overall students need to impr setting out. Squashing work 9+ bottom ut page which be seanned.	(Ing)	

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

i

 Year
 12
 Task
 Trials
 MATHEMATICS
 542
 Question
 Mathematics

 Suggested Solutions
 Mathematics
 Mathematics
 Mathematics
 Mathematics

 Marks Marker's Comments 15. a) i Distance from P to centre of S, is given by: $d = \sqrt{(4.2-0)^{2} + (-1+1)^{2} + (0.4-6)^{2}}$ $= \sqrt{(4.2)^2 + (-5.6)^2}$ · = [49 - 7 < 15 : P is closer to the centre than the surface of S. : Plies inside the sphere. is let & be the direction vector of l 0 ∴ V = 6 0.4 (4.2 0 A. -5.6 Ŷ = 4.2 0 -5.6 -0.6 0.6 or 0 - 0.8 0.8 0.6 . L : 0 -L -0.8 -4.2 -1 or λ 0.8 0.4 0.6 /-4.2 -1 -0.6 or ۰۲ ا 0 0.4 -D.8 08

Year 12 Task Trial MATHEMATICS 572 Question 15 Suggested Solutions Marks Marker's Comments in. Ini 10 15 5 (0, -1, 6) S, $\mathcal{L}: \mathcal{L} = \begin{pmatrix} \mathcal{D} \\ -\mathcal{I} \\ 6 \end{pmatrix} + \mathcal{E} \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} \\ -\mathbf{0} & \mathbf{0} \end{pmatrix}$ For the spheres to be internally targential, their centres must be 5 mits apart. Let the centre of S, be (x, y, Z) $\frac{(0)}{(-1)} + 5 \begin{pmatrix} 0.6 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} -3 \\ -1 \\ 10 \end{pmatrix}$: possible equations of Sz are: - 3 -1) = 10 and 1 --1 = 10 \bigcirc Solving for λ correctly (λ takes different values depending on your answer in ii) \bigcirc Equation of 1st sphere D Equation of 2nd sphere

Year 12 Task Tria MATHEMATICS Ext2 Question_ 15 Marks Suggested Solutions Marker's Comments b) $i m \dot{x} = -k^2$ (Newton's 2nd law) $\frac{3}{3k} = -\frac{k^2}{m3k^2}$ $\frac{d}{dx} \left(\frac{1}{2}v^{2}\right) = \frac{-k^{2}}{mx^{2}}$ $\frac{1}{2}v^2 = \frac{-k^2}{m} \int \frac{1}{x^2} dx$ $v^{2} = \frac{-2k^{2}}{m} \left(\frac{1}{2k^{2}} dx \right)$ $= \frac{2k^2}{mx} + C$ 1 when x = 2a, V = 0 $\therefore O = \frac{2k^2}{m(2n)} + C$ $C = -k^2$ ma $= \frac{2L^2}{m} \left(\frac{1}{x} - \frac{1}{2a} \right)$ 1

Vear 12 Task Trials MATHEMATICS Eff 2 Question 15Suggested SolutionsMarks Marker's Commentsb)Alternate method, using the definite integral methodimalliMarker's Commentsiimalla-
$$k^3$$
with realised that something was wrong half way through the
question and decided to "fudge" their way to the answer received only
 $1/3$ at its considered as 2 errors made.Vear12 $\frac{2k^2}{m}$ 12 $\frac{2k^2}{m}$ k k^2 k^2 k^2 k k k^2 k^2

 Year
 12
 Task
 Trial
 MATHEMATICS
 Ext 2
 Question
 Mar

 Suggested Solutions
 Mar

 Marks Marker's Comments $\frac{1}{2} a \sin^{-1}\left(\frac{x - a}{a}\right) - \sqrt{2ax - x^2} = -\frac{ht}{\sqrt{ma}} + C_3$ when t=0, x=2a $\therefore \underline{\alpha\pi} = C_3$ $\therefore a \sin^{-1}\left(\frac{x-a}{a}\right) - \sqrt{2ax-x^2} = -\frac{kt}{\sqrt{ma}} + \frac{a\pi}{2}$: When x=a. $-\int a^2 = -kt + a\pi$ $\int ma = 2$ $\frac{d\pi}{\sqrt{na}} = \frac{d\pi}{2} + a \quad (Since a > o)$ $t = \frac{\pi}{16} \left(\frac{\pi}{2} + 1 \right)$ 00

Year 12 Task Trials MATHEMATICS Ext 2 Question 15 Suggested Solutions Marks Marker's Comments $\frac{\int x}{\int \sqrt{2a-x}} dx = \frac{-k}{\int \sqrt{a}} \int dt$ $let I = \left(\begin{array}{c} \sqrt{2x} \\ \sqrt{2a-x} \end{array} \right) let \sqrt{x} = \sqrt{2a} \sin \left(\frac{\pi}{2} \le 0 \le \frac{\pi}{2} \right)$ $x = 2a \sin^2 \theta$ X= 2asin'o du 4asiroCoro $\therefore I = \int \frac{\sqrt{2a} \sin \theta}{\sqrt{2a - 2a \sin^2 \theta}} 4a \sin \theta \cos \theta \, d\theta$ de=4asiroloso de = (JZa Sind x 4asindlosodo Sino 4asinocoso do Icasod 4aSin Odd (Since 型 LOS型) $= 2a \left| - \cos 2\theta \, d\theta \right|^{-1} \left[\cos 2\theta - \sin^2 \theta - \sin^2 \theta \right]$ = 1 - 25,00 = $2a[0 - \frac{1}{2}Sin20] + C$: $Sin^{2}0 = 1 - Cas20$ 2 = 2a0-aSin20 + C -> Sin20-Va $= 2a \sin^{1}\left(\frac{\sqrt{3}x}{\sqrt{2}a}\right) - \sqrt{2ax - x^{2}} + ($ SC. = 25ind 600 = 2×52 × 12a-2 $= \frac{\sqrt{2\alpha x - x^2}}{\alpha}$

$$\frac{\text{Year} \left[2 \text{ Task findy MATHEMATICS } \underbrace{\text{Edd}}_{\text{Question}} \right] \text{ Question } \underbrace{\left\{ \begin{array}{c} \nabla \\ \text{Suggested Solutions} \right\}}_{\text{Norks}} \\ \underline{\text{Marker's Comments}} \\ \vdots 2a Sin^{-} \left(\underbrace{Jx} \right) - J2x - x^{2} = -kt + c \\ \hline \sqrt{Jaa} \\ \vdots 2a Sin^{-} \left(\underbrace{Jx} \right) - \sqrt{2ax - x^{2}} = -kt + a \\ \vdots 2a Sin^{-} \left(\underbrace{Jx} \right) - \sqrt{2ax - x^{2}} = -kt + a \\ \hline \frac{1}{\sqrt{ma}} \\ \vdots 2a Sin^{-} \left(\underbrace{Jx} \right) - \sqrt{2ax - x^{2}} = -kt + a \\ \hline \sqrt{ma} \\ \hline \\ \frac{1}{\sqrt{ma}} \\ \frac{$$

Year 12 Trial Q16		
Suggested Solutions	Marks Awarded	Marker's Comments
(a)		
(i)		
Let $z = 1 + w + w^2 + w^3 + w^4$ where $w = e^{2\pi i/5}$.		Using the identity,
Then		$0 = w^5 - 1 = (w - 1)(1)$
$wz = w + w^2 + w^3 + w^4 + w^5$		$+ w + w^2$
$= 1 + w + w^2 + w^3 + w^4 \qquad (w^5 = 1)$		$+ w^3 + w^4$)
So		τ ω)
z - zw = 0		along with $w \neq 1$ was
i.e.		accepted.
z(1-w)=0		
	1	
Since $w \neq 1$, it follows $z = 0$. Hence the desired result follows.		
		Many students took the
(ii)		geometric series
Consider that	1	$1 + w + w^2 + w^3 + w^4$
$(1 + 2w + 3w^2 + 4w^3 + 5w^4)(w - 1)$	Sufficient,	$+ w^5$
$= w + 2w^{2} + 3w^{3} + 4w^{4} + 5w^{5} - 1 - 2w - 3w^{2} - 4w^{3} - 5w^{4}$	logical progress.	$=\frac{w^{6}-1}{w-1}$
$= -(1 + w + w^2 + w^3 + w^4) + 5w^5$	progress.	and differentiated, giving
$= -(0) + 5 \cdot 1$ by part (i) and since $w^5 = 1$		the desired result. Differentiation of
= 5	1	complex-valued functions
Hence, as $w \neq 1$,	Final	is NOT part of the course
$1 + 2w + 3w^2 + 4w^3 + 5w^4 = \frac{5}{w - 1}$	conclusion.	and is therefore <u>NOT</u> something you are allowed to do.
(iii)		
Given $P(z) := z^5 - 1$, we have for w^k where $k \in \mathbb{Z}$,	1 Needed to	The worst type of question you can hope for
$P(w^k) = \left(w^k\right)^5 - 1$	demonst-	is one where the target is
$=(w^5)^k-1$	rate an underst-	given to you. Why? Because you must explain
= 1 - 1	anding	why you're doing what
= 0	that w ^k was a zero	you're doing when you're doing it. No matter how
so, by factor theorem, $P(z)$ may be factorised as	of the	'trivial' you think, it's not
$z^{5} - 1 = (z - 1)(z - w)(z - w^{2})(z - w^{3})(z - w^{4})$	polynomial $z^5 - 1$ or	the point of the exercise. Ignore this advice at your
Also,	something	peril.
$z^{5} - 1 = (z - 1)(1 + z + z^{2} + z^{3} + z^{4})$	equivalent that meant one could	Many students moved straight into producing a

so, $(z-1)(1 + z + z^{2} + z^{3} + z^{4})$ $= (z-1)(z-w)(z-w^{2})(z-w^{3})(z-w^{4}) \dots (*)$ Hence for $z \neq 1$, $1 + z + z^{2} + z^{3} + z^{4} = (z-w)(z-w^{2})(z-w^{3})(z-w^{4}) \dots (\#)$ Now, we have then that (#) is an identity for all $z \neq 1$. But then LHS and RHS agree for at least five distinct values of z, hence the quartic polynomials are identical. Hence they also hold true for $z = 1$. Putting $z = 1$, in (#), we find	produce the factorisatio n in w that was desired. 1 Second mark for correct conclusion.	factorisation in w as something to be accepted. No: you must justify. Marks were not deducted for not justifying why, after division by $z - 1$, we are then allowed to make the substitution of $z = 1$ since we are dealing with identities (benefit of doubt was given).
$5 = (1 - w)(1 - w^{2})(1 - w^{3})(1 - w^{4})$ (iv) • One way of handling the problem: If 5 k, then $k = 5j$ for some $j \in \mathbb{Z}$, so $1 + w^{k} + w^{2k} + w^{3k} + w^{4k} = 1 + w^{5j} + w^{2(5j)} + w^{3(5j)} + w^{4(5j)}$ $= 1 + w^{5j} + (w^{5j})^{2} + (w^{5j})^{3} + (w^{5j})^{4}$ $= 1 + 1 + 1^{2} + 1^{3} + 1^{4}$ = 5 And if $\neg 5 k$, then we could note, since $w^{5k} = (w^{5})^{k} = 1^{k} = 1$, that $0 = w^{5k} - 1 = (w^{k} - 1)(1 + w^{k} + w^{2k} + w^{3k} + w^{4k})$ Since 5 does not divide $k, k = 5j + r$ for $r = 1, 2, 3, 4$, so $w^{k} - 1 = w^{5j+r} - 1 = w^{5j}w^{r} - 1 = 1 \cdot w^{r} - 1 = w^{r} - 1 \neq 0$, so the only source of 0 in $(w^{k} - 1)(1 + w^{k} + w^{2k} + w^{3k} + w^{4k}) = 0$ is the factor $1 + w^{k} + w^{2k} + w^{3k} + w^{4k} = 0$ If 5 does not divide k . • The way most candidates handled the problem was through applying quotient-remainder theorem as follows. By quotient-remainder theorem, we may express all integers k in the form k = 5j + r where $j \in \mathbb{Z}, r \in \{0, 1, 2, 3, 4\}$. So,	1 First mark for proving the case for 5 k 1 Second mark for sufficient progress dealing with remaining cases. 1 Final mark for complete proof.	Many students lost a mark for not completing their proof for the case where 5 does not divide k. 'Ellipsis-proofing' or using 'etc.' is not going to cut it when others are completing it fully. Until you perform the derivation, you're asserting a belief, not a fact. You are awarded for presentation of facts.

$$\begin{split} \sum_{n=0}^{4} w^{nk} &= \sum_{n=0}^{4} w^{n(5j+r)} = \sum_{n=0}^{4} (w^{5})^{nj} w^{nr} = \sum_{n=0}^{4} 1 \cdot w^{nr} \\ &= 1 + w^{r} + (w^{r})^{2} + (w^{r})^{3} + (w^{r})^{4} \\ &= \left\{ \frac{w^{5r} - 1}{w^{r} - 1} & \text{if } r \neq 0 \text{ (i.e. } w^{r} \neq 1) \\ &= \int \frac{1 - 1}{w^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1 - 1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1 - 1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \int \frac{1}{b^{r} - 1} & \text{if } r \neq 0 \\ &= \frac{1}{b^{r}$$

Now, by (iv), $1 + w^{j} + w^{2j} + w^{3j} + w^{4j} = 0$ if 5 does not divide *j*, and the sum is 5 otherwise. Hence all terms carrying *j* not a multiple of 5 will make contributions of 0 to the sum. All terms with j a multiple of 5 will

make a contribution of $\binom{n}{i}$ 5.

So, for $5\ell = \max\{5m \in \mathbb{N}_0 : 5m \le n, n \ge 0 \text{ fixed}\}$,

$$S = \frac{1}{5} \sum_{\substack{j=0\\5|j}}^{5\ell} {n \choose j} 5$$

= ${n \choose 0} + {n \choose 5} + {n \choose 10} + \dots + {n \choose 5\ell}$

(i.e. where ℓ is largest integer such that $5\ell \leq n$).

mark for justifying why ~80% of the terms collapse to 0. 1 Final mark for correct

conclusion.

m е r!

(b)
(i)

$$pro|_{\beta_{V}}(\alpha u) = \frac{(\alpha u) \cdot (\beta v)}{(\beta | v |)^{2}} \beta v$$

$$= \frac{\alpha (u \cdot v)}{|v|^{2}} v$$

$$= \alpha \operatorname{prol}_{y} u$$
(ii)
Given

$$\mathbf{a}_{n} = \frac{1}{5^{n}} \begin{bmatrix} (-1)^{n+1} \times 2 \\ 3 \\ (-1)^{n} \end{bmatrix} \mathbf{b}_{n} = \frac{1}{2^{n}} \begin{bmatrix} 1 \\ -7 \\ 7 \end{bmatrix}$$
then

$$\mathbf{c}_{n} := \operatorname{prol}_{a_{n}} \mathbf{b}_{n}$$

$$= \frac{1}{2^{n}} \times \frac{((-1)^{n+1} \times 2 \times 1 + 3 \times (-8) + (-1)^{n} \times 7)}{((-1)^{n+1} \times 2)^{2} + 3^{2} + ((-1)^{n})^{2}} \begin{bmatrix} (-1)^{n+1} \times 2 \\ (-1)^{n} \end{bmatrix}$$

$$= \frac{1}{2^{n}} \times \frac{5 \times (-1)^{n} - 24}{14} \begin{bmatrix} (-1)^{n} \times (-2) \\ 3 \\ (-1)^{n} \end{bmatrix}$$
Presence of $(-1)^{n}$ suggests alternation in c_{n} , where we note that for all integral $n \ge 0$, we get two forms from $\frac{5 \times (-2)^{n} - 24}{2n} \begin{bmatrix} (-1)^{n} \times (-2) \\ 3 \\ (-1)^{n} \end{bmatrix}$, with the only variation occurring because of $\frac{1}{2^{n}}$.
Since we have alternation, we'll get one form when n is even, the other form when n is odd.
We will partition the sum

$$\sum_{n=0}^{\infty} c_{n}$$
into a sum of even n and a sum of odd n .

Let n = 2k. Then

$$c_{2k} = \frac{1}{2^{2k}} \times \frac{5 \times (-1)^{2k} - 24}{14} \begin{bmatrix} (-1)^{2k} \times (-2) \\ 3 \\ (-1)^{2k} \end{bmatrix}$$
$$= \frac{1}{4^k} \times \frac{-19}{14} \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$
$$= \frac{1}{4^k} \times \frac{19}{14} \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

And for n = 2k + 1,

$$c_{2k+1} = \frac{1}{2^{2k+1}} \times \frac{5 \times (-1)^{2k+1} - 24}{14} \begin{bmatrix} (-1)^{2k+1} \times (-2) \\ 3 \\ (-1)^{2k+1} \end{bmatrix}$$
$$= \frac{1}{2} \times \frac{1}{4^k} \times \frac{-29}{14} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$
$$= \frac{1}{4^k} \times \frac{29}{28} \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$$

Hence

$$\sum_{n=0}^{\infty} \mathbf{c}_n = \sum_{k=0}^{\infty} \mathbf{c}_{2k} + \sum_{k=0}^{\infty} \mathbf{c}_{2k+1}$$
$$= \sum_{k=0}^{\infty} \frac{1}{4^k} \times \frac{19}{14} \begin{bmatrix} 2\\ -3\\ -1 \end{bmatrix} + \sum_{k=0}^{\infty} \frac{1}{4^k} \times \frac{29}{28} \begin{bmatrix} -2\\ -3\\ 1 \end{bmatrix}$$
$$= \left(\frac{19}{14} \begin{bmatrix} 2\\ -3\\ -1 \end{bmatrix} + \frac{29}{28} \begin{bmatrix} -2\\ -3\\ 1 \end{bmatrix}\right) \sum_{k=0}^{\infty} \frac{1}{4^k}$$
$$= \frac{1}{28} \left(\begin{bmatrix} -18\\ -201\\ -9 \end{bmatrix} \right) \sum_{k=0}^{\infty} \frac{1}{4^k}$$

Now, if

$$s_n := \sum_{k=0}^n \frac{1}{4^k} = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^n}$$

then

$$\frac{1}{4}s_n = \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^n} + \frac{1}{4^{n+1}}$$

1 Third mark	constants and presenting that as the limiting sum (be careful with projection calculations, this often happens).
for correct	Students have asked since
calculation	the examination whether
of both	separating infinite sums
vectors for odd and	like this is necessarily 'OK'. No, it's not necessarily OK,
even n.	but in a contrived
	condition (i.e. HSC), any non-standard infinite sum
	will have passed
	sufficiency tests for
	convergencethe point is, you don't need to concern
	yourselves with it.

So,

$$s_n - \frac{1}{4}s_n = \frac{3}{4}s_n$$

= $1 - \frac{1}{4^{n+1}}$

So

$$s_n = \sum_{k=0}^n \frac{1}{4^k} = \frac{4}{3} \left(1 - \frac{1}{4^{n+1}} \right)$$

Taking the limit of partial sums, as $n \to \infty$,

$$s_{\infty} = \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{4}{3}$$

Hence

$$\sum_{n=0}^{\infty} \mathbf{c}_n = \frac{4}{3} \times \frac{1}{28} \left(\begin{bmatrix} 18\\ -201\\ -9 \end{bmatrix} \right) = \frac{1}{7} \begin{bmatrix} 6\\ -67\\ -3 \end{bmatrix}$$

1 Final mark for correct limiting sum of vectors in **c**_n